An overview of imaging beamlines and techniques at MAXIV

bio

- 1. Intro MAX IV & beamlines
- 2. SoftiMAX: STXM
- 3. NanoMAX: nano-XRF
- 4. MedMAX: Phase contrast & tomography
- 5. Radiation: dose and damage
- 6. Sample preparation considerations

STXM: scanning transmission X-ray microscopyXRF: X-ray FluoresencesSAXS: scanning small angle X-ray scatteringXAS: X-ray absorption spectroscopy

Synchrotron - principle

Intro

MAX IV Synchrotron

Intro

Intro

Which beamlines?

X-ray imaging

No staining/labelling necessary: distinction comes directly from X-ray interaction with elements (XRF, STXM, also IR) or X-ray scattering/refraction properties (sSAXS/phase contrast).

Resolution: either determined by X-ray spot size (XRF, STXM) - *Diffraction Limited Resolution* $R \approx \lambda/2$ or coherence of the light + detector (phase contrast). sSAXS combines real/reciprocal space resolution

Soft & hard x-rays: absorption contrast is stronger in soft X-rays (STXM): more sensitive & better energy resolution, hard x-rays have better properties for XRF process, and can also penetrate deeper: thicker samples possible

Chemistry

Typical STXM at a typical beamline...

- The beamline provides coherent monochromatic x-rays onto a zoneplate.
- The **zoneplate** projects a nano-sized beam onto the sample.
- The sample is **scanned** through the beam.
- The intensity of the **transmitted** x-ray beam is measured in each spot.
- The x-ray energy is scanned through an **absorption edge**.

SoftiMAX

Quantitative chemical contrast

33

46

38

lipid

17 22 25 25 28 27 25 27 26 29 33 36 42 51 61 72 80

43 53 56 51 **47** 55 62 73 87 101 105 104 106 101 102

52 52 55 67 85 100 109 107 112 116 125 129 122 110 106

45 55 75 103 130 143 147 134 119 107 117 130 134 122 112

52

A.P. Hitchcock *et al.,* J. El. Spec. & Relat. Phen. **144-147**, 259 (2005)

Composite Tectocapsules Containing Porous Polymer Microspheres L.M. Croll, et al., Macromolecules **38**, 2903 (2005)

Antibacterial clay

"Some natural clays, when hydrated, can kill human pathogens including antibiotic resistant strains.

Only certain clays are bactericidal:

- contain soluble reduced metals
- **expandable** clay minerals that absorb cations
- capacity for extended metal release/toxic hydroxyl radicals"

K.D. Morrison, R. Misra, L.B. Williams, Nature Sci. Rep. 6, 19043 (2016)

Co-aggregation of $A\beta$ and $Fe(III) \rightarrow Fe(II)$

STXM spectroscopy study of Fe and AI and their co-aggregation with **beta-amyloid protein**

- For decades, a link between increased levels of iron and areas of **Alzheimer's disease** pathology has been recognized.
- Study interaction between **β-amyloids** (**Aβ**) and synthetic **iron(III)**, reminiscent of ferric iron in the brain:
- Iron(III) accumulates within Aβ-aggregates → Aβ-mediated reduction of iron(III) to a redox-active iron(II) phase with time.
- Aluminium is a further catalyst for this process

C. Everett, et al. J. Royal Soc. Interface 11, 20140165 (2014)

SoftiMAX: open for first users!

Keep in mind:

- *Thin* samples, FoV 1x1 mm², 'standard' resolution: 20 nm & up
- Accessible energies & edges: includes C & N
- Quantitative measurement, sensitivity \approx 1-10mg/g -
- Below 525 eV: hydrated possible -
- 2D is the norm, 3D possible, but cumbersome -
- Closely related: ptychography!
- Magnetic contrast

X. Zhu, et al., PNAS **113**, E8219 (2016) S. Kalirai, et al., PLoS ONE 8, e53368 (2013)

1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
hydro 1	gen																	helium 2
1																		Lin
																		пе
1.03 104	m borylian	T											baron	carbon	nitrogen	axygan	fluorine	4.0028 moon
3	. 4										- 1		5	6	7	8	9	10
	I Be			_									в	C	N	0	F	Ne
6.94 sodu	m magnesium												10.811 aluminium	12.011 silcon	14.007 phosphorus	15.999 sufur	18.998 chlorine	20.180
11	12			L									13	14	15	16	17	18
N	a Mg												AI	Si	Р	S	CI	Ar
22.9	80 24.305			(Teachers		-		1000	Contract I	aistat		- circ	26.982	28.088	30.974	32.065	35.463	39.948
15	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0	98 40.078		44,956	47.837	50.942	51.996	54.938	55.845	58.903	58,693	63.546	65.39	69.723	72.61	74.922	78.95	79.904	83,80
retici 37	um strontium 38		ytrum 39	2irconium 40	41	molybdenum 42	43	ruthionium 44	thodium 45	palladium 46	silver 47	cadmium 48	49	50 tin	artimony 51	tellurturn 52	icdine 53	54
R	h Sr		Y	7r	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sh	Te	1	Xe
85.4	68 67.62		86,906	91.224	92,906	95.94	[56]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
consi 55	um barium 56	57-70	krietum 71	hafnian 72	tantalum 73	tungston 74	rbenium 75	osmium 76	iridum 77	platinum 78	gold 79	morcury 80	thalium 81	lead 82	bismuth 83	polonium 84	astatino 85	nadon 86
C	s Ba	*	Lu	Hf	Та	W	Re	Os	lr l	Pt	Au	Ha	TL	Pb	Bi	Po	At	Rn
132	91 137.33		174.97	178,49	180.95	183.84	188.21	190.23	192.22	195.08	196.97	200,59	204.38	207.2	208.98	[209]	[210]	[222]
franci 87	um radium 88	89-102	103	rutherfordum 104	dubrium 105	seaborgium 106	107	hassium 108	methorium 109	damstadium 110	unununion 111	112		ununquadium 114	2			
F	r Ra	**	1 r	Rf	Dh	Sa	Bh	He	Mt	De	I luur	Hub		Llug				
122	12261	-	12621	[261]	12621	Dec	12641	13	124/41	12711	12721	12771		1289				
	1979 1979 1974 1974 1977 1978 1979 1979 1979 1979 1979 1971 1971																	
																		VI
			lanhunum	conturn.	praseodymum	neodymium	promithium	samarium	europium	gatelinium	tobkm	disprosian	holmum	ertium	thaium	ytorbiem	6	
	*lanthanoids		57	58	29	60	61	62	63	64	65	66	67	68	69	70		
			La	Ce	Pr	Na	Pm	Sm	Eu	Ga	dI	Dy	НО	Er	Im	YD		
			138.91 actinium	thorium	140.91 protactinium	urarium	noptunium	pktonium	151.96 americium	tor.25 curium	158.93 berkelsem	californium	ensleinum	167.26 formium	168.93 mendelevium	nobelium		
				90	91	92	93	94	95	96	97	98	99	100	101	102		
	**actinoids		AC	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	ES	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[262]	[257]	[258]	[259]	3	

G. Schmidt, et al., Geobiology 12, 340 (2014)

275 – 2500 eV

NanoMAX

X-ray Flu·o·res·cence

/eks-rey flʊəˈrɛs(ə)ns,flɔːˈrɛs(ə)ns/

X-ray Fluorescence is the emission of <u>characteristic</u>, secondary X-rays by the atoms of a material which have absorbed X-rays. The emitted light always has a longer wavelength, and therefore lower energy, than the absorbed radiation.

NanoMAX

Nano-XRF mapping

tomography

Embryonic bone mineralization

ORGAN

- Zn @ leading edge of mineralization front

NanoMAX

- Ca concentration in bone center increases during bone maturization

- Non-ordered Ca deposits: not hydroxyapatite before bone formation

Isabella Silva Barreto et al., Adv. Sci. 2020, 2002524

Cartilage

1

Tattoos: marked for life

Tattoo: deposit insoluble ink in the dermal skin layer, where they eventually form pigment particles up to several micrometers in size

In lymph nodes only smaller (nano)particles were found. The exact size limit preventing this translocation is unknown yet.

The deposit of particles leads to chronic enlargement of the respective lymph node and lifelong exposure.

The signatures can be linked to the pigments and provide strong analytical evidence for migration of pigments from the skin towards regional lymph nodes in humans.

INTENSITY / COUNT

Target sites for Os complex in human ovarian cancer cells

- Cancer chemotherapy drugs contain Pt complexes: severe side effects (Pt resistance)
- Try other metals & complexations: Ru, Rh, Gd, Nb, Co, Ti, V -> **Os**^{II} arenes: 49x more potent than cisplatin towards a range of 809 cancer cell lines
- XRF: Pt-based DNA-intercalators concentrate in nuclei, while *cisplatin* is evenly distributed in the cell *Gd complexes* maybe in mitochondria: inconclusive micro-XRF (and was done at higher concentrations than 'humane')

- Osmium not localized in cell nuclei (no overlap with Zn, marginal with P) and suggests that DNA is **not** a major target.

- IC-PMS and XRF indicate **Os^{II} arenes** instead located in mitochondria.
- Ca outside of ER may indicate apoptosis.

Carlos Sanchez-Cano et al., Chem. Eur. J. 23, 2512 (2017).

CELL

NanoMAX: in full user operation!

Keep in mind:

- Small areas per scan (\leq 100 x 100 μ m2), resolution 50nm and up: from 20 min x hrs per scan
- 3D information is lost: penetration depth OK, but keep samples thin ($\leq 2\mu m$) to avoid blurring (or do tomo!)
- Semi-quantitative: compare to XRF standards (NB: surrounding 'matrix') or theory
- Sensitivity: down to $\approx 1-100 \ \mu g/kg$, but depends a lot on element & local concentration!
- Not for elements below P, and vacuum helps
- Tissue/organ: use alternate slices for optical microscopy
- NB: sample preparation contamination and wash out of elements!

Nano-XRF at NanoMAX: Zn in plant seeds

MedMAX

Phase contrast tomography

Tumour tissue highlighted

Phase contrast needs coherent beam \rightarrow MAX IV has that!

Example – cretaceous insect in amber

From: Lecture given by Phil Willmott, SLS Switzerland

MedMAX

MedMAX

MedMAX concept

MedMAX: on the wish list!

How will MedMAX be unique?

- 3D zooming in and out from the organ level to sub-cellular level with the same instrument
- Bright x-ray beam of MAX IV is necessary for optimizing image resolution/contrast vs. sample radiation dose. Coherence enables phase imaging and shorter exposure times.
- Dynamic studies will enable following biological processes in living organisms in 3D
- On-site Comparative Medicine Unit provides context for longitudinal pre-clinical imaging on mice and rat models
- Extensive user support in image analysis to interpret multidimensional datasets to quantitatively support the scientific outcome

MedMAX: A high-speed 3D imaging beamline for pre-clinical medical studies, study of physiological processes in cell biology, tissues, and zoology, biomaterials, and cultural heritage science

MedMAX

In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.

Walker, SM, Schwyn, DA, Mokso, R, Wicklein, M, Müller, T, Doube, M, Stampanoni, M, Krapp, HG, Taylor, GK PLoS Biol 12(3): e1001823 (2014).

Shedding light on metal-based nanoparticles in zebrafish by computed tomography with micrometer resolution E. Cörek, *et al.*, Small **16**(31), 2000746 (2020).

Micrometer-resolution X-ray tomographic full-volume reconstruction of an intact post-mortem juvenile rat lung E. Borisova, *et al.*, Histochemistry and Cell Biology (2020).

...and finally, a check-list

Before an experiment, think about:

- 1) Resolution needed
- 2) Information needed: which contrast mechanism is best?
- 3) Acceptable radiation dose?
- 4) Sample preparation
- 5) Combinations of BLs
- 6) Contact us to discuss!

Dose versus resolution for transmission x-ray imaging

Calculation of radiation dose using best of phase, absorption contrast and 100% efficient imaging

This plot: Howells *et al.*, *J. Electr. Spectr. Rel. Phen.* **170**, 4 (2009). See also Shen *et al.*, *J. Sync. Rad.* **11**, 432 (2004). ²³

Cryo preservation keeps chemistry intact

- Jin, Paunesku, Lai, Gleber, Chen, Finney, Vine, Vogt, Woloschak, and Jacobsen, *J. Microscopy* **265**, 81 (2017).
- See also Perrin, Carmona, Roudeau, and Ortega, *J. Analyt. Atom. Spectr.* **30**, 2525 (2015).

Thank you!

MIRari:anders.engdahl@med.lu.seSoftiMAX:karina.thanell@maxiv.lu.seNanoMAX:ulf.johansson@maxiv.lu.seForMAX:kim.nygard@maxiv.lu.seTensor SAXS:marianne.liebi@chalmers.seMedMAX:rajmund.mokso@maxiv.lu.seDanMAX:Innokenty.kantor@maxiv.lu.se

SAXS: eg. Organizational structure of (macro)molecules, like fibrils – distances, orientations. TensorSAXS: a 3D implementation of this, both done at ForMAX. Regular SAXS also at CoSAXS (= open for users) MIRari: using IR light for very sensitive molecular vibration contrast – characteristic resonances indicate eg. Phosphate, triglycerides – etc. DanMAX: imaging like MedMAX (simplified) but the beamline is not dedicated to biological samples. **Open for first users 2021**

Wish list beamline

Microscopy for InfraRed And Rapid Imaging: MIRaRI

What? An IR microscope for imaging, based on chemical contrast,
for 2D imaging at the (sub) μm scale, of samples with complex chemistry.

mIRage - spatial resolution of 500 nm over the whole MIR region.
Uses IR light for photothermal excitation + a visible laser for analysis.

Microscopy for InfraRed And Rapid Imaging: MIRaRI

What? An IR microscope for imaging, based on chemical contrast,
for 2D imaging at the (sub) μm scale, of samples with complex chemistry.

mIRage - spatial resolution of 500 nm over the whole MIR region.
Uses IR light for photothermal excitation + a visible laser for analysis.

• AFM-IR (or s-SNOM): spatial resolution down to ~20nm. IR light is coupled to an AFM-tip, where the tip diameter sets the resolution.

Small-angle x-ray scattering on solid samples

Small-angle x-ray scattering on bone

Small-angle x-ray scattering on bone

X-ray beam size \rightarrow real-space resolution ($\approx 1 \times 1 \ \mu m^2 - 50 \times 50 \ \mu m^2$)

SAXS pattern \rightarrow nano-scale features ($\approx 1 - 500$ nm)

ForMAX

Small-angle X-ray scattering (SAXS) probes myelin sheath's periodic structure. 3D scanning SAXS (3D sSAXS) is applied on thin mouse brain sections, retrieving orientation distribution functions (ODFs) of myelinated axons per voxel.

Also in 3D: SAXS tensor tomography

Length scales: Time scales:

≈ nm to mm ≤ 1 minute (2D) ≤ 1 hour (3D)

Possible examples:

- (1) Nanocomposite characterization
- (2) 3D cellulose fibril structure in cell walls

Liebi et al, Nature 527, 349 (2015)