About me

I am an Associate Professor in Toxicology and chair of the KI Council for Environment and Sustainable Development. The research in my group is mainly about understanding the interaction between nanoparticles and cells.

Research description

Genotoxic effects of nanoparticles. One main focus is to study whether nanoparticles can cause DNA damage in cells and elucidate underlying mechanisms. We mainly work with cultured lung cells and various methods for studying toxic effects. In a VR project, we have shown that reporter cell lines (ToxTracker) efficiently can be used to demonstrate whether the nanoparticles are genotoxic. Clear effects were for example observed for nanoparticles of nickel (Åkerlund et al., 2018) and cobalt (Cappellini et al, 2018). In an ongoing project (VINNOVA), welding particles are studied.

Advanced cell methods for studying toxic effects of nanoparticles. Another focus is to investigate whether advanced cell models better can mimic a real situation and predict effects seen in animal experiments. The overall aim is to replace animal experiments (3R). In a project that funded by "Research without animal testing", we test various methods to study interactions between cells upon exposure to nanoparticles (co-cultures, conditioned medium etc.) We also expose the cells to airborne nanoparticles (air-liquid interface exposure).

Can nanoparticles dissolve in cells? In collaboration with researchers at KTH, we study to what extent nanoparticles can dissolve in different fluids and in cells (bio-solubility), and whether it is the nanoparticles or the released ions that cause the cell damage (see e.g. Gliga et al., 2014). In a new project (FORMAS) we have studied gold nanoparticles that are considered insoluble in physiological environments. We showed that gold nanoparticles can dissolve in cell medium and in macrophages. The effect was particularly clear for small (5 nm) gold nanoparticles and if we simultaneously stimulated inflammation, see Carlander et al., 2019.

New cell-based test for determining the allergenic potency of chemicals. People exposed to skin sensitizing chemicals can develop contact allergy and eczema after re-contact with the substance. At the cellular level the chemical exposure causes toxicity to cells in the epithelium and these cells secrete signaling molecules that activate the immune system. In a new project (VR-3R), this is studied in order to find a method that effectively can predict the skin sensitizing potential of various chemicals and mixtures.


2016: Associate Professor in Toxicology at the Institute of Environmental Medicine (IMM)

2006: Dr.Med.Sci., Karolinska Institutet. Scientific field: Medicine/ Environmental medicine. Thesis title: Particularly Harmful Particles? - A study of airborne particles with a focus on genotoxicity and oxidative stress. 

2001: M.Sci. Chemistry from Karlstad University. Main subjects: Chemistry (Karlstad University), Environmental Sciences (Karlstad University), Human Biosciences/Biology (University of Newcastle, Australia) Toxicology (Karolinska Institutet)


Academic honours, awards and prizes

Receiver of stipend from ”Konung Carl XVI Gustafs 50-årsfond för vetenskap, teknik och miljö”, 2012

Main funding

VR. Project title: “Nano-Cell interactions: DNA damage of well characterized metal and metal oxide nanoparticles investigated by using high-throughput comet assay and reporter cell lines” (2015-2018)

FORMAS. Project title: "Nanoparticles in the lung – how can bio-solubility be measured and used in modelling?" (2018-2020)

VR. Project title: "Development of a novel cell-based assay for determination of skin sensitizing potency of chemicals" (2018-2020)

VINNOVA. Project title "Minimized risk for release of harmful substances from welding fume in FCW stainless steels" (2018-2020)

VINNOVA. Health risks related to additiv manufacturing (3D-printing), HÄMAT (2018-2020)


Loading bibliometrics...